Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bis[μ-2-(pyridin-2-yl)ethanolato]bis[bromidocopper(II)]

M. Mobin Shaikh, ${ }^{\text {a* }}$ Saloni Mathur ${ }^{\text {a }}$ and Md. Jamal Uddin ${ }^{\text {b }}$
${ }^{\text {a }}$ National Single Crystal X-ray Diffraction Facility, IIT Bombay, Powai, Mumbai 400 076, India, and ${ }^{\text {b }}$ Department of Natural Sciences, Coppin State University, 2500 West North Avenue, Baltimore, Maryland 21216, USA
Correspondence e-mail: xray@chem.iitb.ac.in

Received 25 September 2011; accepted 20 October 2011
Key indicators: single-crystal X-ray study; $T=150 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$; R factor $=0.031 ; w R$ factor $=0.087$; data-to-parameter ratio $=13.9$.

The title compound, $\left[\mathrm{Cu}_{2} \mathrm{Br}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{NO}\right)_{2}\right]$, was synthesized by reaction of CuBr_{2} with 2-(pyridin-2-yl)ethanol (hep-H) in methanol. The asymmetric unit consists of one hep ligand and a CuBr unit. The Cu^{2+} ion is thereby coordinated by the N atom and the deprotonated hydroxy O atom in a distorted square-planar geometry that is completed by another O atom. The latter acts as bridging ligand towards the second, symmetry-equivalent, Cu atom, thus generating a centrosymmetric dimeric unit, with the inversion centre halfway between the Cu atoms. These units are linked via $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, leading to the formation of a hydrogen-bonded one-dimensional-polymeric chain along a..

Related literature

For similar dinuclear copper complexes see Lah et al. (2006); Shaikh et al. (2010).

Experimental

Crystal data

```
\(\left[\mathrm{Cu}_{2} \mathrm{Br}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{NO}\right)_{2}\right]\)
\(M_{r}=531.19\)
Triclinic, \(P \overline{1}\)
\(a=4.2066\) (2) A
\(b=8.4338\) (3) A
\(c=11.5113(6) \AA\)
\(\alpha=91.122(4)^{\circ}\)
\(\beta=90.195(3)^{\circ}\)
```

$\gamma=97.033(1)^{\circ}$
$V=405.24(3) \AA^{3}$
$Z=1$
Mo $K \alpha$ radiation
$\mu=7.56 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
$0.28 \times 0.21 \times 0.17 \mathrm{~mm}$

Data collection

Oxford Diffraction Xcalibur-S diffractometer
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009)
$T_{\text {min }}=0.226, T_{\text {max }}=0.360$
3453 measured reflections 1388 independent reflections 1298 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.026$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031 \quad 100$ parameters
$w R\left(F^{2}\right)=0.087$
H -atom parameters constrained
$S=1.05$
1388 reflections
$\Delta \rho_{\text {max }}=0.84 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.74 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{O} 1^{\mathrm{i}}$	$1.910(3)$	$\mathrm{Cu} 1-\mathrm{Cu} 1^{\mathrm{i}}$	$3.0294(9)$
$\mathrm{Cu} 1-\mathrm{O} 1$	$1.943(3)$		
$\mathrm{Cu} 1-\mathrm{N} 1$	1.977 (3)		
$\mathrm{Cu} 1-\mathrm{Br} 1$	$2.3670(6)$		
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 1$	$76.32(12)$	$\mathrm{Cu} 1^{\mathrm{i}}-\mathrm{O} 1-\mathrm{Cu} 1$	$103.68(12)$
Symmetry code: $(\mathrm{i})-x+2,-y+2,-z+2$.			

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{Br}^{\mathrm{ii}}$	0.95	3.00	$3.716(4)$	134
$\mathrm{C} 6-\mathrm{H} 6 A \cdots 1^{\mathrm{iii}}$	0.99	2.64	$3.545(5)$	153

Symmetry codes: (ii) $x+1, y, z$; (iii) $x-1, y, z$.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Financial support received from the Department of Science and Technology (New Delhi, India) is gratefully acknowledged. We also gratefully acknowledge Professor Pradeep Mathur, National Single Crystal X-ray Diffraction Facility, IIT Bombay, and Professor Goutam K. Lahiri, Chemistry Department, IIT Bombay, for their kind support for this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FI2115).

References

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Lah, N., Leban, I. \& Clérac, R. (2006). Eur. J. Inorg. Chem. pp. 4888-4894.
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
Shaikh, M. M., Srivastava, A. K., Mathur, P. \& Lahiri, G. K. (2010). Dalton Trans. 39, 1447-1449.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2011). E67, m1612 [doi:10.1107/S1600536811043637]

$\operatorname{Bis}[\mu-2$-(pyridin-2-yl)ethanolato]bis[bromidocopper(II)]

M. M. Shaikh, S. Mathur and M. J. Uddin

Comment

Dinuclear $\mathrm{Cu}(\mathrm{II})$ complexes have often been used as models to study the magnetic-exchange interactions and as building blocks for the construction of polynuclear compounds with interesting magnetic properties (Lah et al. 2006). The alkoxo bridged dinuclear $\mathrm{Cu}(\mathrm{II})$ complexes consists of two copper atoms bridged by two alkoxido oxygen atoms from alkoxypyrid-ine-type ligands have drawn considerable interest in solid state transformations (Shaikh et al. 2010).

The dimeric title compound (Fig.1) features a dinuclear complex with site symmetry -1 . The Cu (II) ions are linked via the two μ^{2}-alcoholic oxygen atoms, yielding a four-membered planar ring $\mathrm{Cu}_{2} \mathrm{O}_{2}$. One pyridine nitrogen atom of hep and the bromide ligands complete the coordination environment, yielding a distorted square-planar geometry. The Cu ions are separated by 3.0294 (9) \AA. The μ - O bridge is slightly asymmetric with $\mathrm{Cu}-\mathrm{O}$ distances of 1.910 (3) and 1.943 (3) \AA and $\mathrm{Cu}-\mathrm{O}-\mathrm{Cu}$ angle of 103.68°. (Table 1). These bond-distances and angles are in agreement with the reported dimeric molecules by Lah et al. (2006) and Shaikh et al. (2010).

Moreover, each dimeric unit is further extended through $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bondings (Table 2) with the neighboring dimeric unit forming a one-dimensional-polymeric chains along a-axis (Fig. 2).

Experimental

A solution of hep- $\mathrm{H}(123 \mathrm{mg}, 1.0 \mathrm{mmol})$ in 30 ml methanol was added to a 10 ml methanolic solution of $\mathrm{CuBr}_{2}(223 \mathrm{mg}$, 1.0 mmol) and the resultant solution was stirred for 2 h at room temperature. The solution was then passed through filter paper (Whatman filter paper, 70 mm) in order to remove any unreacted materials. The filtrate was allowed to stand at room temperature for crystallization. On slow evaporation light blue single crystals of $[\mathrm{Cu}(\mu-\mathrm{hep}) \mathrm{Br}]_{2}$ were obtained after 10 days. M.P.:488-490 K. Yield: 82%. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{Cu}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{Mr}=531.19)$: C,31.66; H, 3.04; N, 5.27. Found: C,31.30; H,3.11; N, 5.67.

Refinement

The hydrogen atoms were placed geometrically and treated as riding on their parent atoms, with $\mathrm{C}-\mathrm{H} 0.95$ (pyridyl), $\mathrm{C}-\mathrm{H}$ 0.99 (methylene) $\AA\left[U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})\right]$.

Figures

Fig. 1. View of the molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Symmetry-related moiety generated by $\mathrm{i}:-\mathrm{x},-\mathrm{y},-\mathrm{z}$.

supplementary materials

Fig. 2. A tilted perspective view of hydrogen bonded one-dimensional-polymeric chain along a-axis. Hydrogen bonds as dashed lines.

Bis[μ-2-(pyridin-2-yl)ethanolato]bis[bromidocopper(II)]

Crystal data

$\left[\mathrm{Cu}_{2} \mathrm{Br}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{NO}\right)_{2}\right]$
$M_{r}=531.19$
Triclinic, $P \mathrm{~T}$
Hall symbol: -P 1
$a=4.2066$ (2) \AA
$b=8.4338$ (3) \AA
$c=11.5113(6) \AA$
$\alpha=91.122(4)^{\circ}$
$\beta=90.195(3)^{\circ}$
$\gamma=97.033(1)^{\circ}$
$V=405.24(3) \AA^{3}$

$$
\begin{aligned}
& Z=1 \\
& F(000)=258 \\
& D_{\mathrm{x}}=2.177 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 3586 \text { reflections } \\
& \theta=3.5-30.0^{\circ} \\
& \mu=7.56 \mathrm{~mm}^{-1} \\
& T=150 \mathrm{~K} \\
& \text { Block, blue } \\
& 0.28 \times 0.21 \times 0.17 \mathrm{~mm}
\end{aligned}
$$

1388 independent reflections
1298 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=3.5^{\circ}$
$h=-5 \rightarrow 4$
$k=-9 \rightarrow 9$
$l=-13 \rightarrow 13$
$0.226, I_{\max }=0.360$
3453 measured reflections

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.087$
$S=1.05$
1388 reflections

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0549 P)^{2}+0.5089 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$

100 parameters
0 restraints

$$
\begin{aligned}
& \Delta \rho_{\max }=0.84 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.74 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Cu1	$0.91306(11)$	$0.96968(5)$	$0.87303(4)$	$0.01736(18)$
Br1	$0.60658(9)$	$0.76112(4)$	$0.76674(3)$	$0.02191(18)$
O1	$1.0535(7)$	$1.1399(3)$	$0.9846(2)$	$0.0219(6)$
N1	$1.0035(8)$	$1.1189(4)$	$0.7436(3)$	$0.0174(7)$
C1	$1.1498(10)$	$1.0720(5)$	$0.6475(4)$	$0.0220(9)$
H1	1.1873	0.9635	0.6396	0.026^{*}
C2	$1.2475(10)$	$1.1759(5)$	$0.5598(4)$	$0.0254(9)$
H2	1.3495	1.1398	0.4925	0.030^{*}
C3	$1.1933(10)$	$1.3341(5)$	$0.5722(4)$	$0.0266(10)$
H3	1.2575	1.4082	0.5131	0.032^{*}
C4	$1.0444(10)$	$1.3833(5)$	$0.6716(4)$	$0.0226(9)$
H4	1.0082	1.4917	0.6817	0.027^{*}
C5	$0.9486(9)$	$1.2720(5)$	$0.7564(3)$	$0.0186(8)$
C6	$0.7862(9)$	$1.3159(5)$	$0.8657(4)$	$0.0197(8)$
H6A	0.5811	1.2456	0.8729	0.024^{*}
H6B	0.7365	1.4273	0.8605	0.024^{*}
C7	$0.9894(10)$	$1.3012(4)$	$0.9745(3)$	$0.0195(8)$
H7A	1.1934	1.3728	0.9691	0.023^{*}
H7B	0.8737	1.3335	1.0441	0.023^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu 1	$0.0243(3)$	$0.0158(3)$	$0.0116(3)$	$0.0008(2)$	$0.0009(2)$	$0.0016(2)$
Br 1	$0.0253(3)$	$0.0211(3)$	$0.0183(3)$	$-0.00140(17)$	$-0.00193(18)$	$0.00043(17)$
O 1	$0.0347(17)$	$0.0151(14)$	$0.0161(15)$	$0.0033(12)$	$-0.0002(12)$	$0.0032(11)$
N 1	$0.0201(17)$	$0.0206(17)$	$0.0117(17)$	$0.0031(13)$	$-0.0019(13)$	$0.0001(13)$
C 1	$0.025(2)$	$0.024(2)$	$0.018(2)$	$0.0060(16)$	$0.0004(17)$	$0.0012(17)$
C 2	$0.025(2)$	$0.035(2)$	$0.016(2)$	$0.0017(18)$	$0.0049(17)$	$-0.0003(18)$
C 3	$0.028(2)$	$0.029(2)$	$0.022(2)$	$-0.0008(18)$	$0.0017(18)$	$0.0086(18)$

C4	$0.027(2)$	$0.019(2)$	$0.021(2)$	$-0.0008(16)$	$-0.0011(17)$	$0.0030(16)$
C5	$0.0153(19)$	$0.023(2)$	$0.018(2)$	$0.0019(15)$	$-0.0031(15)$	$0.0012(16)$
C6	$0.020(2)$	$0.0186(19)$	$0.021(2)$	$0.0043(16)$	$0.0010(16)$	$0.0007(16)$
C7	$0.023(2)$	$0.0172(19)$	$0.018(2)$	$0.0034(15)$	$0.0048(16)$	$0.0000(16)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Cu} 1-\mathrm{O} 1^{\mathrm{i}}$	1.910 (3)
$\mathrm{Cu}-\mathrm{O} 1$	1.943 (3)
$\mathrm{Cu} 1-\mathrm{N} 1$	1.977 (3)
$\mathrm{Cu} 1-\mathrm{Br} 1$	2.3670 (6)
$\mathrm{Cu}-\mathrm{Cu1}{ }^{\text {i }}$	3.0294 (9)
O1-C7	1.426 (4)
$\mathrm{O}-\mathrm{Cu} 1^{\mathrm{i}}$	1.910 (3)
N1-C5	1.344 (5)
N1-C1	1.344 (5)
C1-C2	1.380 (6)
C1-H1	0.9500
C2-C3	1.385 (6)
$\mathrm{O} 1^{\text {i }}-\mathrm{Cu} 1-\mathrm{O} 1$	76.32 (12)
$\mathrm{O} 1^{\text {i }}-\mathrm{Cu} 1-\mathrm{N} 1$	162.34 (14)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$	90.44 (12)
O1- ${ }^{\text {i }}$ Cu1-Br1	98.08 (8)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{Br} 1$	163.87 (9)
N1-Cu1-Br1	97.69 (10)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{Cu} 1^{\text {i }}$	38.54 (8)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{Cu1}{ }^{\text {i }}$	37.78 (8)
N1-Cu1-Cu1 ${ }^{\text {i }}$	127.28 (10)
$\mathrm{Br} 1-\mathrm{Cu} 1-\mathrm{Cu} 1^{\text {i }}$	134.80 (3)
C7-O1-Cu1 ${ }^{\text {i }}$	125.6 (2)
C7-O1-Cu1	124.4 (2)
$\mathrm{Cu} 1-\mathrm{O} 1-\mathrm{Cu} 1$	103.68 (12)
C5-N1-C1	119.7 (3)
C5-N1-Cu1	119.9 (3)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cul}$	120.0 (3)
N1-C1-C2	122.3 (4)
N1-C1-H1	118.9
C2-C1-H1	118.9
C1-C2-C3	118.5 (4)
C1-C2-H2	120.8
C3-C2-H2	120.8
$\mathrm{O} 1{ }^{\text {i }}-\mathrm{Cu}-\mathrm{O} 1-\mathrm{C} 7$	-153.1 (4)
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 1-\mathrm{C} 7$	38.7 (3)
$\mathrm{Br} 1-\mathrm{Cu}-\mathrm{O} 1-\mathrm{C} 7$	-81.8 (4)
$\mathrm{Cu} 1-\mathrm{Cu} 1-\mathrm{O} 1-\mathrm{C} 7$	-153.1 (4)
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Cu}-\mathrm{O}-\mathrm{Cu} 1^{\text {i }}$	0.0

$\mathrm{C} 2-\mathrm{H} 2$	0.9500
$\mathrm{C} 3-\mathrm{C} 4$	$1.387(6)$
$\mathrm{C} 3-\mathrm{H} 3$	0.9500
$\mathrm{C} 4-\mathrm{C} 5$	$1.394(6)$
$\mathrm{C} 4-\mathrm{H} 4$	0.9500
$\mathrm{C} 5-\mathrm{C} 6$	$1.496(6)$
$\mathrm{C} 6-\mathrm{C} 7$	$1.529(6)$
$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	0.9900
$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	0.9900
$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	0.9900
$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	0.9900

119.4 (4)
120.3
120.3
119.3 (4)
120.4
120.4
120.8 (4)
116.9 (3)
122.4 (4)
112.9 (3)
109.0
109.0
109.0
109.0
107.8

$\mathrm{H} 6 \mathrm{~A}-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	107.8
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 6$	$109.4(3)$

O1—C7—H7A 109.8
C6-C7-H7A 109.8
O1—C7—H7B 109.8
C6-C7-H7B 109.8
H7A-C7—H7B 108.2

$\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$-173.3(3)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$0.3(6)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$0.2(6)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-0.8(6)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$-0.6(6)$

sup-4

supplementary materials

$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 1-\mathrm{Cu} 1^{\mathrm{i}}$	$-168.20(15)$
$\mathrm{Br} 1-\mathrm{Cu} 1-\mathrm{O} 1-\mathrm{Cu} 1^{\mathrm{i}}$	$71.3(3)$
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 5$	$-77.1(5)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 5$	$-36.2(3)$
$\mathrm{Br} 1-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 5$	$129.8(3)$
$\mathrm{Cu} 1^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 5$	$-45.2(3)$
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 1$	$96.1(5)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 1$	$137.0(3)$
$\mathrm{Br} 1-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 1$	$-56.9(3)$
$\mathrm{Cu} 1^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 1$	$128.0(3)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$-0.1(6)$

$\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$172.6(3)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 6$	$-179.7(4)$
$\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 6$	$-6.5(5)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	$1.1(6)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-179.9(4)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$65.4(5)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-113.7(4)$
$\mathrm{Cu} 1-\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 6$	$-145.3(3)$
$\mathrm{Cu} 1-\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 6$	$1.9(4)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{O} 1$	$-60.6(4)$

Hydrogen-bond geometry ($\AA,^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1 — \mathrm{H} 1 \cdots \mathrm{Br}^{\mathrm{ii}}$	0.95	3.00	$3.716(4)$	134.
$\mathrm{C} 6 — \mathrm{H} 6 \mathrm{~A} \cdots \mathrm{O}^{\text {iii }}$	0.99	2.64	$3.545(5)$	153.

Symmetry codes: (ii) $x+1, y, z$; (iii) $x-1, y, z$.
supplementary materials

Fig. 1

Fig. 2

